

109th AOCS Annual Meeting 発表

題名; Multiple β forms of tripalmitin in different crystallization pathway

氏名; Seiya Takeguchi ^{1,2)}, Hironori Hondoh ²⁾, Hidetaka Uehara ¹⁾, Satoru Ueno ²⁾

所属;¹⁾ The Nisshin OilliO Group, Ltd.,²⁾ Hiroshima University.

Polymorphic transformation of fat crystals, such as fat bloom in chocolate, will be a cause of deterioration of foods. Therefore, it is important to understand polymorphic behavior of fat crystals. Tri-saturated triacylglycerol is known to have three polymorphs, α , β ' and β . In addition, some researchers suggested the existence of extra structures. However, the details remain unidentified. Here we report that tripalmitin (PPP) shows different β forms depending on their crystallization history.

PPP was crystallized in α or β' forms from melt, and then they were transformed into β forms (β 4 from α , and β 2 from β') by solid-solid phase transition by gradually increasing temperature. Additional heat treatment was applied for further phase transformation to β 3 and β 1.

The following results were obtained.

1) From the polarized microscopy, the $\beta 2$ changed its morphology during transformation from β ', while $\beta 4$ kept the same morphology as α form.

2) From the X-ray diffraction measurement, we confirmed the $\beta 4$ transformed into $\beta 3$ (α route) and $\beta 2$ transformed into $\beta 1$ (β ' route) because $\beta 4$ ($\beta 2$) and $\beta 3$ ($\beta 1$) had different short spacing.

3) From the differential scanning calorimetry measurements, the order of melting points were $\beta 4 < \beta 3 < \beta 2 < \beta 1$.

These results indicated that PPP have four different polymorphs, $\beta 4$ and $\beta 3$, which were transformed from α form, and $\beta 2$ and $\beta 1$, which were transformed from β' form.